Automatic Lexical Resource Acquisition for Constructing an LMF-Compatible Lexicon of Modern Standard Arabic

Mohammed Attia, Lamia Tounsi, Josef van Genabith
Outline

• Introduction
• Principles of Lexicography
• Modern Standard Arabic vs. Classical Arabic
• Review of Arabic lexicographic work
• Project Description
• Lexical Markup Framework (LMF)
• Automatic Acquisition Architecture
• Results and evaluation
• Conclusion
Introduction

• Importance of lexical resources for NLP tasks
 – The backbone of morphological analysers
 – Principal factor for coverage
 – Unknown words in parsing cause a problem and we want to minimize them as much as possible

• Advantages of automatic acquisition vs. Manual construction of dictionaries
 – Time and effort
 – Speed and efficiency
 – Consistency and quality
 – It is impractical to manually analyse large and ever-growing amounts of data

• How the resource will fit in the annotation/parsing tools
 – DCU Parser
 – DCU annotation tools
Principles of Lexicography

Definition of a dictionary
- A description of the vocabulary used by members of a speech community. A dictionary deals with:
 - conventions not idiosyncrasies
 - norms not rarities
 - probable not possible

- Lexical evidence
 - Subjective evidence
 - introspection
 - informant-testing
 - Objective evidence
 - A corpus provides typifications of the language
 - A typical lexical entry means it is both “frequent” or “recurrent” and “well-dispersed” in a corpus.
 - A typical lexical entry belongs to the stable “core” of the language.

Principles of Lexicography

- **Corpora and Dictionaries**
 - Brown Corpus, 1 million words, 1960s,
 → Citations for *American Heritage Dictionary*
 - Birmingham corpus, 20 million words, 1980s
 → Cobuild English Dictionary.
 - British National Corpus (BNC), 100 million words, 1990s set the standard (balance, encoding)
 - The Oxford English Corpus, one billion words, 2000s
 → Oxford English Dictionary
 - Longman Corpus Network, 330 million word
 → Longman Dictionaries
Principles of Lexicography

- **Dictionaries before Corpora**
 - Citation banks
 - A citation is a short extract providing evidence for a word usage or meaning in authentic use.
 - Disadvantages
 - labour-intensive
 - instances of usage are authentic, but there is a big subjective element in their selection.
 - People tend to notice what is remarkable and ignore what is typical
 - bias towards the novel or idiosyncratic usages
Principles of Lexicography

• Characteristics of a reliable corpus
 – The corpus does not favour high class language
 – The Corpus should be large and diverse
 – The corpus should be either synchronic or diachronic
 – The corpus should be well-balanced using “stratified sampling”
 – The corpus should avoid skewing
Principles of Lexicography

• Lexical Profiling
 – Word POS
 v, n, adj, adv, conj, det, interj, prep, pron
 – Valency Information
 – Collocations
 commit a crime, sky blue, lame duck
 – Colligational preferences
 was acquitted, trials (difficult experiences)
Principles of Lexicography

- Lexical Profiling Software
- Concordancers
- Word Sketch (Sketch Engine) - Adam Kilgarriff
Concordancer
Sketch Engine

<table>
<thead>
<tr>
<th>object_of</th>
<th>count</th>
<th>frequency</th>
<th>a_modifier</th>
<th>count</th>
<th>frequency</th>
</tr>
</thead>
<tbody>
<tr>
<td>strike</td>
<td>61</td>
<td>43.38</td>
<td>hard</td>
<td>23</td>
<td>25.99</td>
</tr>
<tr>
<td>drive</td>
<td>26</td>
<td>27.56</td>
<td>real</td>
<td>20</td>
<td>23.43</td>
</tr>
<tr>
<td>get</td>
<td>27</td>
<td>16.38</td>
<td>best</td>
<td>14</td>
<td>19.31</td>
</tr>
<tr>
<td>seal</td>
<td>5</td>
<td>14.82</td>
<td>good</td>
<td>19</td>
<td>18.01</td>
</tr>
<tr>
<td>make</td>
<td>26</td>
<td>13.6</td>
<td>bad</td>
<td>8</td>
<td>15.31</td>
</tr>
<tr>
<td>find</td>
<td>8</td>
<td>7.81</td>
<td>better</td>
<td>8</td>
<td>14.4</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>modifies</th>
<th>count</th>
<th>frequency</th>
<th>n_modifier</th>
<th>count</th>
<th>frequency</th>
</tr>
</thead>
<tbody>
<tr>
<td>basement</td>
<td>22</td>
<td>38.62</td>
<td>plea</td>
<td>26</td>
<td>40.62</td>
</tr>
<tr>
<td>hunter</td>
<td>22</td>
<td>37.23</td>
<td>wage</td>
<td>6</td>
<td>16.8</td>
</tr>
<tr>
<td>price</td>
<td>54</td>
<td>33.65</td>
<td>credit</td>
<td>6</td>
<td>14.68</td>
</tr>
<tr>
<td>bookshop</td>
<td>11</td>
<td>26.73</td>
<td>sale</td>
<td>5</td>
<td>10.47</td>
</tr>
</tbody>
</table>

Part of the Word Sketch for the noun *bargain*
Modern Standard Arabic vs. Classical Arabic vs. Colloquial Arabic

• Modern Standard Arabic
 – The language of modern writing, prepared speeches and the language of the news

• Classical Arabic
 – The language of Arabia before Islam and after Islam until the Medieval Times
 – Present religious teaching, poetry and scholarly literature.

• Colloquial Arabic
 – Variety of Arabic spoken regionally and which differs from one country or area to another. They are to a certain extent mutually intelligible.

Code Shifting – Diglossia – multi-layered diglossia
Modern Standard Arabic vs. Classical Arabic vs. Colloquial Arabic

• Modern Standard Arabic
 – Tendency for simplification
 • Some CA structures to die out
 • Structures marginal in CA started to have more salience
 • no strict abidance by case ending rules
 – A subset of the full range of structures, inflections and derivations available in CA
 – MSA conforms to the general rules of CA
 – How “big” or how “small” the difference (on morphological, lexical or syntactic levels) need more research and investigation
Review of Arabic lexicographic work

- *Kitab al-'Ain* by al-Khalil bin Ahmed al-Farahidi (died 789) (refinement/expansion/organizational Improvement)
- *Tahzib al-Lughah* by Abu Mansour al-Azhari (died 980)
- *al-Muheet* by al-Sahib bin 'Abbad (died 995)
- *Lisan al-'Arab* by ibn Manzour (died 1311)
- *al-Qamous al-Muheet* by al-Fairouzabadi (died 1414)
- *Taj al-Arous* by Muhammad Murtada al-Zabidi (died 1791)
- *Muheet al-Muheet* (1869) by Butrus al-Bustani
- *al-Mu'jam al-Waseet* (1960)
Review of Arabic lexicographic work

• Bilingual Dictionaries
 – Edward William Lane's *Arabic-English Lexicon* (1876) indebted to *Taj al-Arous* by al-Zabidi
 – Hans Wehr's Dictionary of Modern Written Arabic (1961)
 • Size: 45,000 entries
 • Aim: Using scientific descriptive principles to describe present-day vocabulary through wide reading in literature of every kind
 • Application
 – Selection of works by high flying poets and literary critics such as Taha Husain, Taufiq al-Hakim, Mahmoud Taimur, al-Manfalauti, Jubran Khalil Jubran
 – Use of secondary sources (dictionaries) for expansion
 – Inclusion of rarities and classisms that no longer formed a part of the living lexicon
Review of Arabic lexicographic work

• Bilingual Dictionaries
 – Landau and Brill (1959) *A Word Count of Modern Arabic Prose*
 • A word count based on 270,000 words based on the news and 60 contemporary books on: fiction, literary criticism, history, biography, political science, religion, social studies, economics, travels and historical novels
 • 6,000 words in the news
 • 11,000 words in literature
 • 12,400 words in the combined list (does not include proper nouns)
Review of Arabic lexicographic work

• Bilingual Dictionaries
 • COBUILD-style, Corpus-based (3 million words)
 • Manually constructed
 • Covers the whole range of the actual vocabulary in the corpus with 17,000 entries compared to 45,000 entries in Hans Wehr
 • 5% of frequent new words not found in Hans Wehr
Review of Arabic lexicographic work

- Bilingual Dictionaries
 - Buckwalter Arabic Morphological Analyzer (2002)
 - Size: 40,222 lemmas (including 2,034 proper nouns)
 - Includes many obsolete lexical items
 (But how many?)

<table>
<thead>
<tr>
<th>#</th>
<th>Meaning</th>
<th>Classical Word</th>
<th>Google</th>
<th>MSA Word</th>
<th>Google</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>sully</td>
<td>قلعط</td>
<td>8</td>
<td>لطخ</td>
<td>29,600</td>
</tr>
<tr>
<td>2</td>
<td>caulk</td>
<td>قلفط</td>
<td>9</td>
<td>أفسد</td>
<td>205,000</td>
</tr>
<tr>
<td>3</td>
<td>wear</td>
<td>استكد</td>
<td>4</td>
<td>أنهك</td>
<td>37,100</td>
</tr>
<tr>
<td>4</td>
<td>fickle</td>
<td>غملج</td>
<td>7</td>
<td>متقلب</td>
<td>189,000</td>
</tr>
<tr>
<td>5</td>
<td>erosion</td>
<td>انتكال</td>
<td>7</td>
<td>تأكل</td>
<td>1,700,000</td>
</tr>
</tbody>
</table>

Google score for Classical vs. MSA entries
Review of Arabic lexicographic work

• Bilingual Dictionaries
 – Buckwalter Arabic Morphological Analyzer (2002)
 • Searching for Buckwalter on Aljazeera (40,205 reduced to 31,359 after removing diacritics)
 • Both false positives and false negatives are possible but the figures are still indicative

<table>
<thead>
<tr>
<th>Frequency Range</th>
<th>0</th>
<th>1-100</th>
<th>101-1000</th>
<th>Over 1000</th>
</tr>
</thead>
<tbody>
<tr>
<td>Number of Occurrences</td>
<td>7312</td>
<td>13563</td>
<td>6606</td>
<td>3878</td>
</tr>
<tr>
<td>Per Cent</td>
<td>23.31%</td>
<td>43.25%</td>
<td>21.06%</td>
<td>12.36%</td>
</tr>
</tbody>
</table>
Project Description

• Acquisition of Arabic lexical resources
 – from corpora
 – modern language
 – varied domains
 – inducing the lexical profile for each lemma (frequency, inflections, derivations, citation, etc.)

• Production of new lexical sets
 – accumulated in a MySQL database
 – meeting Lexical Markup Framework specifications
 – exported into Lexical Markup Framework format
Project Description

• How our lexical database will be different from Buckwalter’s. We include
 – only entries attested in a corpus
 – subcategorization frames
 – +/-human semantic information for nouns
 – detailed information about derived nouns/adjectives
 (active or passive participle or a verbal noun, *masdar*)
 – multi-word expressions
 – classification of proper nouns: person, place, organization, etc.
Lexical Markup Framework (LMF)

ISO 24613:2008

• Aims:
 – Managing lexical resources
 – Providing a metamodel (or a super-hierarchy) to accommodate lexical information at all levels
 – Provides specifications, encoding format and naming conventions to ensure consistency
 – Enable the merger of individual electronic lexical resources
 – Allows instantiation of monolingual, bilingual or multilingual lexical resources
 – Allows work at a small scale or large scale
 – Tries to cover all natural languages (including languages with rich and complex morphology such as Arabic)
Lexical Markup Framework (LMF)

ISO 24613:2008

• History:
 – It started in 2003
 – Earlier lexicon standardization projects include GENELEX, EDR, EAGLES, MULTEXT, PAROLE, SIMPLE and ISLE
 – Project team:
 • Nicoletta Calzolari (Italy)
 • Gil Francopoulo (France)
 • Monte George (US)
 • + A panel of 60 experts
 – Published officially as an International Standard in 2008
 – Uses Unified Modeling Language (UML)
 – LMF is considered the state of the art in NLP lexicon management field
Lexical Markup Framework (LMF)

Architecture
1. Morphology extension
3. NLP syntax extension
4. NLP semantics extension
5. NLP multiword expression patterns extension
Lexical Markup Framework (LMF)

Architecture

Global Information → Lexical Resource → Lexicon → Lexical Entry → Sense → Link to Arabic WordNet Synsets

- Form (Morphology)
- Syntactic Behaviour (Subcat Frames)
- Multiword Expressions
Lexical Markup Framework (LMF)

Simple Example: Noun
Lexical Markup Framework (LMF)

Example: Verb
Lexical Markup Framework (LMF)

Example: Arabic Root Management
Lexical Markup Framework (LMF)

Sources of Lexical Information

- **Morphological information (ATB, Buckwalter, FST):**
 - word root, lemma, form, diacritics, frequency, citations. This information will be extracted from the Arabic Treebank
- **Syntactic information:** Subcategorization frames (Arabic Annotation Algorithm)
- **Semantic information:** linking to Arabic WordNet.
- **Dictionary information:** translation in English (Buckwalter, Online Dictionaries, Landau’s Word Count)
- **Multi-word Expression (MWE) and named entity.** FST and Arabic Named Entity Lexicon extraction project
Automatic Acquisition Methodology

• Methodology
 – Starting with the annotated data to build a core lexicon
 – Moving toward un-annotated data for extension in domain and size

• Lemmatization Tools
 – Buckwalter
 – MADA-TOKAN
 – FST-Guesser
Automatic Acquisition Methodology

- Lemmatization is an essential prerequisite due to
 - derivational and inflectional nature of Arabic
 - lack of diacritics (vowel marks)
 - the employment of cliticization (affixation of function words to content words)
 - 2,552 well-formed forms for transitive verbs (شكر “shakar” (to thank))
 - 519 valid forms for regular nouns (معلم “mu’allim” (teacher))

Wa-sa-ya-shkur-una-hu
And-will-thank-they-him
And they will thank him.
Automatic Acquisition

• From annotated data: Arabic Treebank (ATB)
• Advantages
 – morphologically/syntactically annotated
 – modern texts
 – tokenized and diacritized,
 – manually reviewed by human annotators
• Disadvantages
 – Not large: Only ½ million words
 – Not diverse: taken from the newswire
Automatic Acquisition

• From annotated data: Arabic Treebank (ATB)

Results

<table>
<thead>
<tr>
<th></th>
<th>Types</th>
<th>Unique Lemmas</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nouns</td>
<td>41,183</td>
<td>7,184</td>
</tr>
<tr>
<td>Adjectives</td>
<td>14,044</td>
<td>2,540</td>
</tr>
<tr>
<td>Verbs</td>
<td>17,888</td>
<td>2,315</td>
</tr>
<tr>
<td>Total</td>
<td>73,115</td>
<td>12,039</td>
</tr>
</tbody>
</table>
Testing and Evaluation

From annotated data: Arabic Treebank (ATB)
- Testing on Aljazeera Search Engine, Why?
 - The web is polluted with noisy data
 - The type of application (lexicon) has a narrow threshold for noise
 - Technically API does not allow more than 1000 searches per day

<table>
<thead>
<tr>
<th>Misspellings</th>
<th>Google Score</th>
<th>CNN Score</th>
<th>Right Form</th>
<th>Google Score</th>
<th>CNN Score</th>
</tr>
</thead>
<tbody>
<tr>
<td>arround</td>
<td>1,200,000</td>
<td>3</td>
<td>around</td>
<td>780,000,000</td>
<td>44,555</td>
</tr>
<tr>
<td>vedio</td>
<td>4,450,000</td>
<td>0</td>
<td>video</td>
<td>2,590,000,000</td>
<td>131,845</td>
</tr>
<tr>
<td>resaercher</td>
<td>6,200</td>
<td>0</td>
<td>researcher</td>
<td>26,500,000</td>
<td>19,729</td>
</tr>
<tr>
<td>possebility</td>
<td>31,100</td>
<td>0</td>
<td>possibility</td>
<td>95,100,000</td>
<td>38,163</td>
</tr>
<tr>
<td>bilieve</td>
<td>29,200</td>
<td>0</td>
<td>believe</td>
<td>349,000,000</td>
<td>44,330</td>
</tr>
<tr>
<td>perfromance</td>
<td>195,000</td>
<td>0</td>
<td>performance</td>
<td>459,000,000</td>
<td>17,085</td>
</tr>
<tr>
<td>mesjudge</td>
<td>80</td>
<td>0</td>
<td>misjudge</td>
<td>278,000</td>
<td>196</td>
</tr>
<tr>
<td>gtfrde</td>
<td>1,750</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ghgh</td>
<td>233,000</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Testing and Evaluation

From annotated data: Arabic Treebank (ATB)
- Testing on Aljazeera Search Engine, Why?
 - Aljazeera is more than just news.
Testing and Evaluation

From annotated data: Arabic Treebank (ATB)

- Testing results
- No. of Lemmas from the ATB: 12340
- After removing diacritics: 10071
- No. of Not found on Al-Jazeera: 208 (2%)

Error analysis

- Mistagging in the annotation process (baloqA' should be bi-liqA')
- Buckwalter gives the wrong lemma it should be >abora$iy~+ap not >abora$iy~
- Not found in Al-Jazeera (>adokan nor dakonA')
Automatic Acquisition Architecture

From un-annotated data

• Advantages
 – Large:
 • CCA: ½ million
 • Wiki: 40 million
 • Gigaword: 200 million
 – Diverse: taken from the various domains

• Disadvantages
 – No morphological or syntactical annotation
Automatic Acquisition Architecture

From un-annotated data

• Results for Corpus of Contemporary Arabic (CCA)
 – Nominals: 240236
 – Unique nominals: 12502
 – Verbals: 67812
 – Unique verbals: 4245
 – Total: 16747
 – Not intersected with ATB: 6312
Automatic Acquisition Architecture

From un-annotated data

• Testing on Aljazeera Search Engine
 – New lexical items: 6312
 – lemmas not found: 543 (9%)
 – full forms: not found: 941 (15%)
 – Neither lemma nor form: 240 (4%)
Automatic Acquisition Architecture

From un-annotated data
- Dealing with the residue (Words not analysed by MADA)
 - 6106 items from the CCA had no analysis by MADA, potentially useful
 - Error Detection (Language dependent)
 - Not including numbers or non-Arabic letters
 - Not including (".َّ.+) taa marbouta in the middle
 - Not including (".ُ.+) Alif maqsoura in the middle in the middle
 - Not including (".ُّ.") two alifs anywhere
- Error Detection (Language independent)
- We merge MADA with our FST Guesser to filter through these words
Automatic Acquisition Architecture

MadaOutput: *1.000000 wAlmtswqyn=[wAlmtswqyn_0 POS:AJ Al+ +ACC w+ +DEF MOOD:NA +PL]=NO-ANALYSIS

Guesser output:

<table>
<thead>
<tr>
<th>الاسم باللغة العربية</th>
<th>الاسم باللغة الإنجليزية</th>
<th>ترتيب</th>
</tr>
</thead>
<tbody>
<tr>
<td>والمسؤونين</td>
<td>Guess+dual+acc+gen@</td>
<td>2</td>
</tr>
<tr>
<td>والمسؤونين</td>
<td>Guess+masc+pl+acc+gen@</td>
<td>3</td>
</tr>
<tr>
<td>والمسؤونين</td>
<td>Guess+sg@</td>
<td>1</td>
</tr>
<tr>
<td>والمسؤونين</td>
<td>Guess+dual+acc+gen@</td>
<td>0</td>
</tr>
<tr>
<td>والمسؤونين</td>
<td>Guess+masc+pl+acc+gen@</td>
<td>0</td>
</tr>
<tr>
<td>والمسؤونين</td>
<td>Guess+sg@</td>
<td>0</td>
</tr>
<tr>
<td>والمسؤونين</td>
<td>conj@+ال+المستوى+Guess+dual+acc+gen@</td>
<td>6</td>
</tr>
<tr>
<td>والمسؤونين</td>
<td>conj@+ال+المستوى+Guess+masc+pl+acc+gen@</td>
<td>7</td>
</tr>
<tr>
<td>والمسؤونين</td>
<td>conj@+ال+المستوى+Guess+sg@</td>
<td>5</td>
</tr>
<tr>
<td>والمسؤونين</td>
<td>conj@+ال+المستوى+Guess+dual+acc+gen@</td>
<td>0</td>
</tr>
<tr>
<td>والمسؤونين</td>
<td>conj@+ال+المستوى+Guess+masc+pl+acc+gen@</td>
<td>0</td>
</tr>
<tr>
<td>والمسؤونين</td>
<td>conj@+ال+المستوى+Guess+sg@</td>
<td>0</td>
</tr>
<tr>
<td>والمسؤونين</td>
<td>conj@+ال+المستوى+Guess+dual+acc+gen@</td>
<td>4</td>
</tr>
<tr>
<td>والمسؤونين</td>
<td>conj@+ال+المستوى+Guess+masc+pl+acc+gen@</td>
<td>5</td>
</tr>
<tr>
<td>والمسؤونين</td>
<td>conj@+ال+المستوى+Guess+sg@</td>
<td>3</td>
</tr>
<tr>
<td>والمسؤونين</td>
<td>conj@+ال+المستوى+Guess+dual+acc+gen@</td>
<td>0</td>
</tr>
<tr>
<td>والمسؤونين</td>
<td>conj@+ال+المستوى+Guess+masc+pl+acc+gen@</td>
<td>0</td>
</tr>
<tr>
<td>والمسؤونين</td>
<td>conj@+ال+المستوى+Guess+sg@</td>
<td>0</td>
</tr>
</tbody>
</table>
Automatic Acquisition Architecture

- GuessLemma: 7@متسوق@والمتسوقين@AJ
- GuessLemma: 6@متسوق@والمتسوقين@AJ
- GuessLemma: 5@متسوق@والمتسوقين@AJ
- GuessLemma: 5@المتسوق@والمتسوقين@AJ
- GuessLemma: 4@المتسوق@والمتسوقين@AJ
- GuessLemma: 3@المتسوق@والمتسوقين@AJ
- GuessLemma: 3@المتسوق@والمتسوقين@AJ
- GuessLemma: 2@المتسوق@والمتسوقين@AJ
- GuessLemma: 1@المتسوق@والمتسوقين@AJ
Automatic Acquisition Architecture

• Formula for giving weight to the guessing output:

Word Weight =

$$\frac{((\text{# of different forms} \times 2) + (\text{# of form repetitions} \times 1))}{2}$$

Testing the Formula (How useful in cascading good solutions up the list)

- 57% from the top are valid for inclusion in a dictionary as is
- 6% from the bottom are valid for inclusion in a dictionary as is
Automatic Acquisition Architecture

• Arabic Wikipedia:
 • First Portion 2 million words
 – MADA coverage is 96%.
 – 36,000 unique words not found by MADA
 – 22,164 verbs, nouns and adjectives are collected from the first portion
 – 10,712 were not found in the ATB
 7,763 Nominals not found in the ATB
 2,949 verbs not found in the ATB
Automatic Acquisition Architecture

From un-annotated data

• Results for Arabic Wikipedia (Full Corpus)
 – Nominals: 17076178
 – Unique nominals: 22969
 – Verbals: 2991974
 – Unique verbals: 8151
 – Total: 31120
 – No Analysis by MADA: 1,724,200
Automatic Acquisition Architecture

- Al-Jazeera Corpus
- Attia's Morphology
- DCU Arabic Named Entities
- Arabic Wikipedia
- Landau's word count
- Arabic WordNet
- MADA Lemmatizer
- CCA
- Wiki
- Gigaword
- Jazeera

- Arabic Annotation Algorithm
- Penn Arabic Treebank
- Annotated-Text Lemmatization
- Buckwalter Morphology
- Subcat Frames
Conclusion

• Size of acquired lexicon
 – 12,340 from ATB
 • 1,000 from Attia fst
 • 6,312 from CCA
 • 18,823 from Wiki
 – Buckwalter contains irrelevant lexical entries (at least 1/5 is outside of MSA)
 • 23% of the lemmas are not found in Al-Jazeera
 • 20% of the lemmas are not found in Arabic Wiki (40 million words)

• Significance of frequency information to calculate word weight as a method of validation
• Using search engine as a way to flag potentially problematic entries
• Improving error detection techniques